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We extend the usual one-dimensional equilibrium theory of the surface space charge region that
screens a semiconductor from an external electric field in order to admit perturbations in three
dimensions and time. We identify a class of perturbations of the one-dimensional equilibrium that
grow exponentially in time at least until our first-order perturbation theory fails. The resulting
spontaneous field enhancement may explain enhancement factors observed in electron emission
from semiconducting cathodes and may similarly contribute to gate leakage in metal–oxide–
semiconductor field effect transistors. ©2000 American Institute of Physics.
@S0003-6951~00!04204-2#

Advanced growth techniques for crystalline films of
wide band gap semiconductors with low electron affinity
~LEA! may lead to the next generation of cold cathodes.1

LEA materials may improve field emission arrays and may
enable single crystal planar cold cathodes. Calculations indi-
cate that graded AlxGa12xN LEA films without doping
might emit high current densities robustly.2 Recent calcula-
tions indicate that doping might dramatically reduce the op-
erating voltages of such cathodes3 or the operating tempera-
tures of similar thermionic cathodes.4

Emission from sharp cold cathodes is increased by geo-
metric field enhancement, but emission from smooth cold
cathodes is also difficult to explain without some mechanism
of field enhancement.5 In addition, low-voltage emission
from high quality nitrogen-doped diamond films appears to
be preceded by arcing which forms craters in the film, but
these craters do not appear sharp enough to account for the
improved emission by geometric field enhancement.5

Consider the quasiequilibrium states of an ideal planar
cold cathode comprising a uniformn-type semiconductor
that fills the half spacez,0. The electron density is

n5NC expS EFn2EC

kBT D
for z,0, whereNC is the effective density of states of the
conduction band and the quasi-Fermi level for electronsEFn

differs from the bulk equilibrium Fermi level by

f5
EFn2EF

q
,

measured in volts. The bulk Fermi level is

EF5EC2kBT exp
NC

ND
,

whereND is the density of donors, which are assumed to be
completely ionized, and the minimum of the conduction
bandEC can be defined to be zero atz52` so that

c52
EC

q

is the usual electric potential in volts. Then

n5ND expS f1c

Vth
D ,

whereVth5kBT/q is the usual thermal voltage. Forc.0 the
deviationsc andf obey Poisson’s equation

¹2c52
q

es
~ND2n!5

qND

es
FexpS c1f

Vth
D21G , ~1!

in standard units wherees is the dielectric permittivity of the
semiconductor andq.0 is the fundamental charge. The de-
viations also conserve charge

2q
]n

]t
1¹•JW50, ~2!

where the current density due to drift and diffusion is

JW5qmnFW 1qD¹n,

and where the electron mobilitym and the diffusion coeffi-
cient D5m/Vth are treated as independent of electric field

FW 52¹c.

SubstitutingFW and

¹n5
n

Vth
~¹f1¹c!

into the two contributions for the current simplifies the ex-
pression for total current

JW5qmn¹f

so that

¹•JW5qm~n¹2f1¹n•¹f!

and Eq.~2! can be written
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mVthF¹2f1
¹~c1f!

Vth
•¹fG5

]~c1f!

]t

in standard units. However, it is convenient to measure
lengths and times in units of the extrinsic Debye length and
the dielectric relaxation time for electrons in the bulk

LD5AesVth

qND
and tR5

es

qmND
,

and to measure voltages in units of the thermal voltageVth ,
so that Eqs.~1! and ~2! become

¹2c5exp~c1f!21 ~3!

and

¹2f1¹~c1f!•¹f5
]~c1f!

]t
. ~4!

We now use Eqs.~3! and ~4! to analyze the stability of
the electron space charge layer that accumulates near the
surface when the semiconductor-vacuum interface is held at
a constant voltageV0.0. We write the electric potential as a
zeroth order equilibrium partc0 plus a perturbation

c5c0~z!1dc~x,y,z,t !.

The quasi-Fermi level coincides with the bulkEF for any
equilibrium state regardless of its stability, so

f5df~x,y,z,t !

contains no zeroth order part. Substituting these expressions
into Eqs. ~3! and ~4! yield a zeroth order equation for the
usual one-dimensional equilibrium

¹2c05ec021 ~5!

and a pair of equations for the first order dynamics of the
perturbations

¹2dc5ec0~df1dc!, ~6!

¹2df1¹c0•¹df5
]~df1dc!

]t
. ~7!

For z!0, wherec050 and there is no nearby boundary,
df,dc}exp(ikxx1ikyy1ikzz1st) solves Eqs.~6! and ~7!
with the usual result that

s52~11kx
21ky

21kz
2!

so that ak50 perturbation dies out in about one unit of time
~i.e., tR! and that higher wave number~i.e., relative toLD

21!
disturbances die out faster.

However, near the semiconductor-vacuum interface, the
z dependence is not harmonic forV0.0. In this case, sepa-
ration of variables using

dc5A~z!exp~ ikxx1 ikyy1st!,

df5B~z!exp~ ikxx1 ikyy1st!

converts the first order Eqs.~6! and ~7! into

A92k2A5ec0~A1B!, ~8!

B92k2B1c08B85s~A1B!, ~9!

where prime indicates ordinary differentiation with respect to
z andk2[kx

21ky
2.

The numerical integration of Eqs.~5!, ~8!, and ~9! re-
quires six constants which can be determined from the fol-
lowing choices. The zeroth order electric field just inside the
cathode,2c08(0), can bespecified as the external field di-
vided by the dielectric constant of the semiconductor assum-
ing there is no surface charge density. In this report, we
restrict ourselves to the case of zero emitted current, so that
B8(0)50 sinceẑJW}B8; in additionB, c0 andA all vanish at
z52` for this case. Finally, at somez0<0 we choose
A(z0) arbitrarily since Eqs.~8! and~9! are linear and homo-
geneous inA andB so that the choice does not affect stabil-
ity.

The dynamics of the perturbations depend on the zeroth
orderc0 which we find using the following technique. Since
limz→2` c0(z)50, there exists az0 such that for allz<z0 ,
Eq. ~5! is arbitrarily close to

¹2c05c0 ,

where we have used the small argument expansion of the
exponential function. Therefore, in the region2`,z<z0 ,
the solution of Eq.~5! is arbitrarily close to

c0~z!5a0ez,

for somea0 and where we have used the fact thatc0(2`)
50. The utility of this result is thatz0 can be chosen to make
c08(z0)5c0(z0) to arbitrary accuracy, which provides two
boundary conditions atz0 in terms of one.

For concreteness, we choosen-type, Si-doped
Al xGa12xN with ND51024m23 and x50.5 so that x
'1 eV, the donor ionization energy is small, and the dielec-
tric constantK'8.75, as we have previously inferred from
the literature.4 In this case,LD53.55 nm andtR50.16 ps at
room temperature. We choose the zeroth order electric field
just inside the cathode to be21 V/mm as should occur in a
n-doped LEA cathode. For the following, a value ofz0

524 was used because it yielded results similar to other
choices,z0525 andz0523.

Numerically integrating~the unapproximated! Eq. ~5!
from z5z0 to z50 results in a value ofc08(0) that can be
conveniently adjusted with a one-parameter search to obtain
2c08(0) Vth /LD521 V/mm for c08(z0)50.1355 exp(z0).

The same technique can be used to reformulate the
boundary conditions of the perturbative system. As beforez0

can be chosen to make Eqs.~6! and ~7! arbitrarily close to

A92k2A5A1B,

B92k2B5s~A1B!

for all 2`,z<z0 . In this asymptotic region, Eqs.~6! and
~7! comprise a linear, homogeneous system with constant
coefficients so that

A~z!5a1eaz,

B~z!5b1eaz,

for somea1 andb1 , wherea is some positive constant, and
where we have used the boundary condition thatA and B
vanish at z52`. Substitution shows that there are two
cases
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~1! a5Ak2 andb152a1 ,

~2! a5As1k211 andb15sa1 ,

but in both cases,A85aA and B85aB in the entire
asymptotic region2`,z<z0 including z5z0 . In either
case, numerical integration of the~unapproximated! system,
Eqs.~8! and ~9!, from z5z0 to z50 is straightforward with
these initial conditions. The second case does not always
admit a zero-emission solution, so we address only the first
case in this letter.

Determination ofs as a function ofk proceeds as fol-
lows. For eachk, an initial value ofs is chosen and the
functionsA andB are numerically integrated fromz5z0 to
z50 with initial conditions A(z0)5exp(kz0), B(z0)
52A(z0), A8(z0)5kA(z0), and B8(z0)5kB(z0) corre-
sponding to case~1! earlier. The value ofB8(0) is driven to
zero by adjustings iteratively. Fork51, for example, the
solution s511.30 is unstable and the resulting functions
A(z) and B(z) are shown in Fig. 1. In standard units,k
50.282 nm21 ands570.6 ps21. The process can be repeated

for severalk to obtain a dispersion relation which shows that
the growth rate increases withk as shown in Fig. 2. Other
solutions exist for anyk, for examples521.97 is a stable
solution fork51 with no finite nodes inA.

We conclude that the space charge region that screens a
semiconductor from an externally applied electric field is not
uniform along the interface, but spontaneously orders itself
into regions of higher and lower electron density and electric
field, at least before electron emission occurs and while our
use of Maxwell Boltzmann statistics is valid.

The analysis is independent of the details of the insula-
tor, so that this conclusion applies to the semiconductor-
vacuum interface of cold cathodes and also to the interface
between silicon and gate oxide in metal–oxide–
semiconductor field effect transistors
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FIG. 1. The perturbationA, B with wave numberk51/LD parallel to the
semiconductor-insulator interface and exponential growth rates
511.30/tR . A is the deviation of the electric potential from the one-
dimensional equilibrium.B is the deviation of the quasi-Fermi level for
electrons from the bulk Fermi level.

FIG. 2. Growth rates vs wave numberk parallel to the semiconductor-
insulator interface for the family of perturbations with one finite node inA,
the deviation of the electric potential from the one-dimensional equilibrium.
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