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ABSTRACT 
 Wide band gap semiconductors exhibit a low electron affinity and may prove suitable for 
cold cathode applications.  We introduce a simple closed-form analytic approximation for the 
stability of electrons in the electron accumulation layer of planar Low Electron Affinity  (LEA) 
semiconducting cathodes.  This analysis extends our previous results, which used Runge-Kutta 
numerical integration of the linearized equations of motion for the electric potential and quasi 
Fermi level. The model shows conditions in which the electrons in the accumulation layer form a 
two dimensional array of regions of higher and lower electron density. This instability could lead 
to field enhancement without surface roughness and could account for observed electron 
emission at low applied fields.   
 
INTRODUCTION 

Wide band gap semiconductors such as diamond, AlN, or BN can exhibit negative 
electron affinities depending on surface termination.  However, n-type doping of these materials 
is difficult.  In contrast, Al1-xGaxN alloys (x~0.5) can be doped n-type and can exhibit a low 
electron affinity of ~1 eV [1].  LEA-coated cold cathodes may lead to vacuum electron devices 
(VEDs) with unprecedented versatility and performance [2].   Robust electron emission with 
high current density has been predicted for graded aluminum gallium nitride that is undoped [3] 
or doped [4].  LEA cathodes that require neither field enhancement nor high temperature may 
lead to VEDs with micrometer grid-to-cathode distances, picosecond transit times, and terahertz 
operating frequencies.   

In this paper we provide simple closed-form expressions for our previous numerical 
prediction that LEA cathodes may be unstable against certain three-dimensional perturbations of 
the electron accumulation layer [5].  The instabilities may lead to ordered regions of higher or 
lower electron densities, and these regions would result in field enhancement without surface 
morphology.     

Our effort is motivated by recent characterizations of planar cathodes which emit more 
electrons at lower voltages than can be readily explained without field enhancement [6] 
according to the usual equilibrium theory [7].   
 
MODEL 

In a Cartesian coordinate system, consider a uniform n-type semiconductor filling the 
region 0≤x with vacuum in the region x>0 as shown in Figure 1. 
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Figure 1.  Coordinate system at the semiconductor/vacuum interface of a semiconductor filling the half space 
x <<<< 0.  The anode (not shown) is parallel to the interface at some x>0 in the vacuum. 
 
Assuming complete ionization and Maxwell-Boltzmann statistics, the electron density for x ≤ 0 
is  

n = NC exp{ (EFn - EC) / kBT } 
 
where NC is the effective density of states of the conduction band and EFn is the quasi Fermi level 
for electrons.  EFn differs from the bulk equilibrium Fermi level EF by  
 
 φ = (EFn - EF) / q (1)  
 
measured in volts. The minimum of the conduction band EC can be defined to be zero in the bulk, 
so that  
 

ψ  = − EC / q 
 
is the usual electric potential in volts.  Then 
 

n = ND exp{ (ψ + φ) / VT} 
 
where  VT =  kBT / q is the usual thermal voltage.  The deviations ψ and φ obey Poisson's 
equation ∇2ψ  =  (q / εS) (ND – n)  which is now 
 

∇2ψ  =  ( q ND / εS )  [ exp{(ψ + φ) / VT} – 1 ] 
 
in standard units where εS  is the dielectric permittivity of the semiconductor and q > 0 is the 
fundamental charge. The deviations also conserve charge 
 

−q ∂n/∂t  + ∇ • J  =  0 
 

where the vector current density due to drift and diffusion is  J = q μ n F + q D ∇ n, which 
simplifies to  

J = q μ n ∇φ, 
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if the electron mobility μ and the diffusion coefficient D  =  μ VT  are treated as independent of 
electric field  

F  = −∇ψ . 
 
The divergence of  J can then be obtained from the product rule 
 

∇ • J  = q μ (  n ∇2φ  + ∇n • ∇φ  )  
 
and, since  ∂n/∂t = (n/VT) ∂/∂t (ψ + φ),  the continuity equation can be written as 
 

μ VT ( ∇ • ND exp{ (ψ + φ) / VT} ∇ φ  ) = ∂/∂t  ND exp{ (ψ + φ) / VT} 
 
which can be simplified by performing ∂/∂t and factoring out the exponential to obtain 
 

μVT  { ∇2φ  + ∇(ψ + φ)  • ∇φ  /  VT  } = ∂/∂t  (ψ + φ) 
 
in standard units.  We will measure lengths in units of the extrinsic Debye length  
 

LD = [  εSVT  / q ND  ] 1/2 , 
 
measure times in units of  the dielectric relaxation time for electrons in the bulk   
 

τR = εS / qμND , 
 
and measure voltages in units of  VT ,  so that Poisson's equation becomes 
 
 ∇2ψ = exp(ψ + φ )  − 1 (2) 
 
and the continuity equation becomes 
 
 ∇2 φ  + ∇(ψ + φ )  • ∇φ  = ∂/∂t (ψ + φ ) . (3) 
 
PERTURBATION 

We are interested in the stability of the electron accumulation layer against perturbations, 
so we write the electric potential and the quasi Fermi level as the sums  
 

ψ  = ψ0 (x) + δψ(x,y,z,t) 
 and 

φ   = φ0 (x) + δφ (x,y,z,t) 
 
of equilibrium parts and perturbations.  But the quasi Fermi level Eqn 1 coincides everywhere 
with the bulk EF for any equilibrium state regardless of its stability, so  φ0 = 0. 

Substituting these expressions into Equations 2 and 3 yields a zeroth order equation for 
the usual one-dimensional equilibrium 
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ψ0′′ =  exp(ψ0 )  − 1 
 
and a first order system of equations for the perturbations 
 

∇2 δψ  =  exp(ψ0 )  (δφ + δψ) 
and 

∇2 δφ  +  ψ0′ δφ ′  =  ∂/∂t (δφ  + δψ)  
 
where prime (′) indicates ordinary differentiation with respect to x. 

 
Figure 2.   The (real part of the) perturbation δδδδψψψψ=ψψψψ1exp(ikxx+ ikyy+Kz+st} of the electric potential of the 
equilibrium accumulation layer at t=0  for ψψψψ1 = 1.  Left:  parallel to interface: a slice in the yz plane through 
x=0,  and  Right: normal to interface: a slice through the xy plane through z=0. 

 
ANALYTIC APPROXIMATION 

The x-dependence of the coefficients exp(ψ0 ) and ψ0′ preclude simple analysis of the 
first-order system.  However the perturbations are confined near the surface where we replace 
the accumulated electron density with a constant effective density typical of the thin region near 
the surface 

ρ ← exp(ψ0)  
 
and we replace the slope ψ0′ of the zeroth order potential with a constant effective slope typical 
of the region 

σ ← ψ0′ . 
 
We estimate the region of validity for this approximation as the x for which ρ+σx > 0:  
 
 -ρ /σ < x < 0 . (4) 
 
In this region of x, the first order equations of motion for perturbations becomes  
 

∇2  δψ = ρ  (δφ + δψ) 
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and 
∇2 δφ   +  σ δφ ′  =  ∂/∂t  (δφ  + δψ)  . 

 
We consider perturbations of the form shown in Figure 2  
 
 δψ = ψ1  exp { ikxx +  ikyy + Kz + st } (5) 
and  
 δφ  = φ1  exp { ikxx +  ikyy + Kz + st }. (6) 
 
where ψ1 and ϕ1 are arbitrarily small constants, which are in general complex if there is a phase 
difference between the two perturbations.   

            
Figure 3.  The approximate rate of growth in time of perturbations of wave number k parallel to the cathode  
surface and spatial decay rate K normal  to the cathode surface for the zeroth-order equilibrium ρρρρ = exp(1)  ≈≈≈≈ 
2.7,  σσσσ = ρρρρ/2  ≈≈≈≈ 1.4, so that the equilibrium electric potential at the surface is ψψψψ0(0) = kBT exp(1) ≈≈≈≈ 68 mV 
relative to the bulk.  Left:  The rate of growth s(k,K) for fixed K = 1.   Right: The rate of growth s(k,K) for 
four ratios k/K  which shows that instabilities may occur in two regimes: large K with low wave number k<K 
and small K  with high wave number k>K.  All curves satisfy the requirement for validity since Kmin = 0.5  <<<<  
K  <<<< 15Kmin  = 7.5 here. 
 

We can expect the modes modeled by Eqns 5 and 6 to be weakly coupled for K is large 
enough to confine the perturbations to the region Eqn 4, so that perturbations with  
 

K > σ / ρ , 
satisfy  

(−k2  + K2) δφ  = ρ (δφ + δψ) 
and 

(−k2  + K2 + σ K) δψ = s (δφ+δψ) 
 
which can be solved for their  rate of growth in time 
 
 s  = − ( k2 − K2 + ρ  ) ( k2 − K2 − σ K ) / ( k2 − K2 ) . (7) 
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The one-dimensional equilibrium is stable against any excitation with s<0  since any such 
perturbation decays exponentially in time back toward the zeroth order equilibrium.  On the 
other hand,  modes with positive s grow in time rather than decay so that the one-dimensional 
zeroth-order equilibrium is unstable against any such perturbation.   

                                     
Figure 4.  The approximate rate of growth in time of perturbations as a function of   spatial decay rate K and 
the ratio k/K for modes that include the large-K-small-k instabilities shown on the right hand side of Figure 
3b for the same ρρρρ =2.7 and σσσσ =1.4.     The plane s=0 has been inserted as a grid.    
 
RESULTS 
 Eqn 5 predicts positive values of s in some regions of  (k, K) space.  Figure 3a is a plot of 
s as a function of K for the case ρ = 2.7,  σ =1.4, and K=1.  In Figure 3a, perturbations with wave 
number k < 1 or with k > 1.54 decay in time but perturbations with K<k<1.53 grow if they are 
excited.  Thermal fluctuations will excite all modes. For Al0.5Ga0.5N doped with silicon at ND= 
1024 m −3, the electron affinity is χ=1 eV, the donor ionization is small, the dielectric 
permitttivity is ε S = 8.85 ε 0, and the electron mobility is μ= 30 V cm−2 s−1 for high quality thin 
films currently reported, as previously inferred from other literature [4].  In this case LD  = 3.55 
nm and τR= 0.16 ps at room temperature.  For Figures 3 and 4 the applied electric field is F0=1.4 
εS/ε0 in units of VT/LD and F0=87 V/μm in standard units.  In this case, we find that the electron 
accumulation layer may be unstable against variations of a few nanometers wavelength in 
electron density along the surface. 
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 The regions of high electron density would result in field enhancement and a lowering of 
the effective barrier for field emission. 
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