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A theory of the space charge limited output current regime of a vacuum thermionic energy
conversion device �TEC� employing a negative electron affinity �NEA� diamond emitter electrode
is derived. The theory is developed by assuming that the electrons behave as a collisionless gas and
self-consistently solving Vlaslov’s equation and Poisson’s equation. Special cases of the theory are
addressed. Calculations are performed to model a TEC with a nitrogen doped diamond emitter
material under various conditions. It is shown that the NEA material outperforms a similar positive
electron affinity material in terms of output power and efficiency because the NEA lowers the
electrostatic boundary condition at the emitter and therefore mitigates the negative space charge
effect. © 2009 American Vacuum Society. �DOI: 10.1116/1.3125282�

I. INTRODUCTION

In recent years, interest has grown in efficient energy con-
version technology as people worldwide investigate the so-
called green technology. In this article, the performance of a
highly efficient direct energy conversion device known as a
vacuum thermionic energy converter �TEC� is modeled and
characterized. The TEC configuration under consideration
employs a hydrogen terminated, doped diamond material as
the emitter electrode which allows the device to operate at a
lower emitter temperature and avoid performance-reducing
space charge effects. This report builds on our previous
work1 which established one bound of the space charge lim-
ited regime by expanding the model to predict the entire
space charge mode of operation.

A vacuum thermionic energy conversion device is a two-
terminal vacuum diode configured to convert heat directly to
electrical work via thermionic emission. First proposed by
Schlichter2 and schematically depicted in Fig. 1, the TEC
operates as follows: the emitter electrode is held at a higher
temperature than the collector electrode. Electrons are ther-
mionically emitted and travel across the evacuated interelec-
trode space. The electrons arrive at the collector electrode
and are absorbed. They travel out the vacuum container
through an electrical lead and do useful work in an external
load. The electrons travel through another lead back to the
emitter and thus complete the circuit.

Vacuum TECs have the potential to efficiently generate
electrical work because heat transport across the device is
chiefly restricted to two mechanisms: thermionic electrons
from the emitter to the collector and Stefan–Boltzmann ra-

diation from both the collector and the emitter. Due to the
vacuum gap, phonons do not contribute to heat transport, in
contrast to a thermoelectric device. The resulting advantage
in efficiency was recognized early in the development of
thermionic technology.3

The physical limitations of vacuum thermionic devices
hampered the development of the technology. First, emitter
materials were refractory metals with relatively large work
functions of 4 or 5 eV. These high work function materials
required high operating temperatures ��1500 K� to achieve
appreciable output power which relegated TECs to niche ap-
plications. To lower the high operating temperatures, the ma-
terials required low work function coatings which were un-
stable. The decisive limitation resulted from the negative
space charge effect. This phenomenon can be explained as
follows: as electrons are emitted into the evacuated interelec-
trode space, a net negative charge develops which presents
an extra electrostatic barrier to the electrons. The less ener-
getic electrons cannot surmount this additional electrostatic
barrier, thereby limiting the output current and output power
of the device. To overcome this space charge limitation, early
investigators determined that the interelectrode space of the
device had to be below 1 �m.4,5 This constraint rendered
vacuum TECs technologically unfeasible and subsequent re-
search focused on vapor thermionic devices. Here we use the
terms “space charge” and “space charge effect” where the
former denotes the presence of electrons in the interelectrode
space, while the latter refers to the condition these electrons
impose on the output current of the TEC.

Diamond materials exhibit properties that may provide
solutions to both of these historical limitations of vacuum
TECs. A key feature of hydrogen terminated diamond for
this application is the negative electron affinity �NEA�: thea�Electronic addresses: josnuasm@andrew.cmu.edu and jrsmith@cmu.edu
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vacuum level of the surface falls below the conduction band
minimum of the material. Many surface orientations of dia-
mond have been observed to acquire a NEA when hydrogen
terminated, including the �100�, �110�, �111�, and polycrys-
talline surfaces.6–12 Moreover, in diamond the donor level of
nitrogen lies roughly 1.7 eV below the conduction band
minimum,13 and the donor level of phosphorus has been re-
ported to lie 0.6 eV below the conduction band
minimum.14,15 According to ultraviolet photoemission spec-
troscopy, thermionic emission spectroscopy,16 and tempera-
ture limited thermionic emission measurements17 performed
in our laboratory, the thermionic barrier height of nitrogen
doped diamond approaches 1.4 eV at temperatures of
300–500 °C. This low emission barrier allows for
sub-1000 K operating temperature of the TEC.

Our previous study has shown that the negative electron
affinity can mitigate the negative space charge effect in a
vacuum TEC. The NEA property lowers the electrostatic
boundary condition just outside the emitter electrode, and by
solving Poisson’s equation and Vlasov’s equation it was
shown the additional space charge barrier was lowered in the
interelectrode space. Put another way, the lowest energy
electrons which are thermionically emitted from a NEA sur-
face will leave the surface with significant kinetic energy. In
essence, the NEA acts as a filter to eliminate the slowest
electrons which are most affected by the negative space
charge.1,18 This article provides a detailed theoretical de-
scription of the entire space charge limited mode of the out-
put current characteristic of a vacuum TEC employing a
NEA diamond emitter material. It goes beyond our previous
study by providing a prescription to calculate the output cur-
rent characteristic for the whole of the space charge limited
regime; our previous work deals only with the calculation of
one boundary of this regime. The theory is applied to a ther-
mionic device featuring a nitrogen doped diamond emitter
electrode. It is shown that the NEA property of the
H-terminated diamond mitigates the negative space charge
effect, consistent with previous results.1,18 Additionally, the
theory predicts cases where the space charge limited mode
can be avoided altogether. Several mathematical details of
the theory are addressed as well.

Since this report focuses on the electron transport across
the interelectrode space, simplifying assumptions about some

surface phenomena were made. As was previously stated, the
NEA is taken to lower the electrostatic boundary condition at
the emitter. Phenomena such as surface band bending and
potential lowering due to image charge effects will affect the
thermionic emission from the emitter, but should not essen-
tially alter the results of this investigation.

II. THEORY

The goal of this theoretical development is to characterize
the space charge limited regime of the output current char-
acteristic, specifically for the case of a TEC with a NEA
material as the emitter electrode. Theoretical characteriza-
tions of TECs have historically been concerned with the
transport of electrons across the interelectrode space; this
theory, therefore, will address the same. The development
presented here will follow the same strategy as previous
studies by considering the electrons in the interelectrode
space as a collisionless gas and self-consistently solving
Vlaslov’s equation and Poisson’s equation.5,19–21 Here elec-
tron current is taken to be positive.

Typically, for a set of device parameters, there exists a
region of the output current characteristic for which the out-
put current is space charge limited. In the case of a NEA
emitter, this region is bounded by the virtual saturation point1

and the critical point, terms for conditions of device opera-
tion which will be defined shortly. To qualitatively under-
stand the physics of the situation, it is useful to consider a
so-called motive diagram, which is similar to a band diagram
in a semiconductor device. The motive in the interelectrode
space is equal to the electrostatic potential times −e, where e
is the fundamental charge. Throughout this article we denote
the motive by �. Figure 2 graphically illustrates several fea-
tures of this theory: the figure shows an output current char-
acteristic of a NEA TEC, along with corresponding motive
diagrams for key points on each. The corresponding picture
of a conventional TEC can be found on pp. 94 and 96 of
Hatsopoulos and Gyftopoulos.5 It is noted that the output
current characteristic in Fig. 2�f� is not single valued. A dis-
cussion of this phenomenon is given in part C of the appen-
dix where it is shown that the physically observed current
will be the current associated with the minimum output
power. We have chosen to leave the non-single valued parts
of the output characteristics in the graphs but we quote only
physically realizable values of output quantities in the text of
this report, denoted where necessary by an asterisk.

This development follows the theory of electron transport
through a vacuum TEC described by Hatsopoulos and
Gyftopoulos,19 especially their definition of a surface and
points just outside the surface.19 This idea is presented here
for clarity: the motive is continuous from points inside the
material to points outside the material. Near the surface of
the material, the motive varies significantly with respect to
position: the variation occurs over the distance of a few tens
of nanometers. “A point just outside the surface” is where the
motive no longer varies so dramatically. Since the interfacial
region of the surface of the material is small relative to the
dimensions of the device, we assume that the surface of the

FIG. 1. Schematic of vacuum thermionic energy conversion device.
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material occurs at a singular position and that the vacuum
level of the material defines the electrostatic boundary con-
dition for the interelectrode space.

In Fig. 2, the emitter and collector are held at tempera-
tures TE and TC, respectively. Both have Richardson’s con-
stants of AE and AC, respectively. It should be noted that
Richardson’s constant is considered as a material property as
opposed to a constant. The emission barrier height of the
emitter is �E, the value of the negative electron affinity is �E

−,
and the work function is �E. The emitter’s Fermi level is
denoted by �E, its vacuum level is denoted by �E, and its
conduction band minimum is given by �EB. Except for �, the
collector has the same attributes as the emitter and are dis-
tinguished by a subscript “C.” Additionally, the collector is at
some voltage V with respect to the emitter as determined by
the load and the output current flowing through the device.
The maximum motive is denoted by �m.

Figure 2�a�, shows the motive which corresponds to the
accelerating regime. Here, the maximum motive occurs be-
low the conduction band minimum and therefore all elec-
trons emitted from the emitter travel unimpeded to the col-
lector. The output current is equal to the emitter saturation
current JES which is given by Richardson’s equation. There
exists a condition, designated the virtual saturation point,
such that the maximum motive occurs coincident with the
conduction band minimum. The virtual saturation condition
bounds the space charge limited regime, and the motive is
shown in Fig. 2�b�. The adjective “virtual” was chosen to
distinguish this case from the saturation point of a conven-
tional TEC because the virtual saturation point occurs in the
interelectrode space as opposed to immediately outside the
emitter. We have previously reported a theoretical descrip-
tion of the virtual saturation point.1

The space charge limited mode is defined as the condi-
tions such that the maximum motive occurs within the inter-
electrode space and presents an extra barrier over which

electrons must pass to reach the collector. The motive dia-
gram shown in Fig. 2�c� displays this condition. In this situ-
ation, the maximum motive occurs at a position xm, and the
motive crosses below the conduction band minimum at some
position xx. Here, the interelectrode space is partitioned into
three regions: �i� x�xm, �ii� xx�x�xm, and �iii� x�xx. At
the critical point, the maximum motive occurs immediately
outside the collector. The critical point condition bounds the
space charge regime and the motive diagram is shown in Fig.
2�d�. For voltages above the critical point voltage, the col-
lector vacuum level defines the maximum motive and the
TEC is operating in the so-called retarding mode. The output
current is given by J=ATE

2 exp�−��C+eV� /kTE� and the mo-
tive is easily determined. Figure 2�e� depicts the motive
diagram.

Our strategy to calculate the space charge limited output
current characteristic is as follows: First, the current and
voltage corresponding to the virtual saturation point are de-
termined. Next, the current and voltage corresponding to the
critical point are calculated. Finally, using the virtual satura-
tion point and critical point as the bounds, the values of
current and voltage for the space charge limited regime are
determined. Each of these steps follows a similar procedure:
calculate the electron distribution function f�x ,ve� in the in-
terelectrode space, calculate the electron number density
ne�x�, then calculate a dimensionless Poisson’s equation, and
finally solve it numerically. An algorithm is developed which
allows the theory to be implemented as a computer program.

A. Critical point

In the case of collisionless electrons, Vlaslov’s equation
can be solved to determine the distribution function of
electrons22 which is given by Eq. �1�,
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FIG. 2. �Color online� �a� Typical motive diagram corresponding to the accelerating range of voltages. �b� Motive diagram corresponding to the virtual
saturation point. �c� Typical motive diagram of the space charge limited mode. �d� Motive diagram of the critical point. �e� Typical motive diagram
corresponding to the retarding range of voltages. �f� Output current characteristic showing distinct regions and special points.
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f�x,ve� = 2ne�xm�� me

2	kTE
�3/2

exp��m − �

kTE
−

meve
2

2kTE
� , �1�

where xm is the location of the maximum motive, ne�xm� is
the number density of electrons at xm, �m is the maximum
motive. ��x� is the value of the motive at point x, me is the
electron mass, k is Boltzmann’s constant, and ve��vex

2 +vey
2

+vez
2 �1/2 is the magnitude of the velocity at a point in space.
At xm, the electron distribution function is half-

Maxwellian; i.e., for positive values of x-velocity the distri-
bution is Maxwellian, otherwise the distribution is zero. Fol-
lowing Langmuir,22 this fact can be exploited to construct the
distribution function at all points in the interelectrode space.
Consider the region i as shown in Fig. 2�c� Electrons in this
region have been emitted from the emitter and have traveled
over the space charge barrier. At a point in this region, the
slowest electrons have a kinetic energy of �m−�. Solving for
the value of x-velocity, one can obtain a lower bound on
electron velocity in this region, indicated by the unit step
function, u�ve�, for the region in Eq. �2�. For regions i and ii,
this analysis yields step functions which are identical to pre-
vious investigations.22 However, the NEA at the emitter sur-
face induces the region iii which introduces a novel element
to the theory. Electrons in region iii are moving in both
x-directions: some have been emitted from the emitter and
are traveling toward the collector, and some have been re-
flected by the space charge barrier and are returning to the
emitter. The minimum kinetic energy of electrons moving
toward the collector is defined by the conduction band mini-
mum of the emitter and the value of the motive, yielding a
minimum velocity in the x-direction of vex= �2��EB

−�� /me�1/2, where �EB defines the conduction band mini-
mum. The kinetic energy of the electrons traveling toward
the emitter is bounded above and below, and therefore the
velocity of the electrons will be bounded above and below.

The slowest electrons traveling toward the emitter are those
which originated from the CBM; at point xx, those electrons
were reflected back toward the emitter and have a velocity of
vex=−�2��EB−�� /me�1/2. The fastest electrons traveling to-
ward the emitter are the electrons which had slightly less
energy than necessary to overcome the space charge barrier.
These reflected electrons have a velocity of vex=−�2��m

−�� /me�1/2. Considering the limits on the velocity of the
electrons in region iii, the electron distribution function can
be expressed in terms of the unit step functions u. The fully
assembled electron distribution function is given in Eq. �2�.
This equation describes the electrons within the interelec-
trode space and is therefore valid for values of position be-
tween the emitter �x=0� and collector �x=d�,

f�x,ve� = 2ne�xm�� me

2	kTE
�3/2

exp��m − �

kTE
−

meve
2

2kTE
	




u�vex − �2

�m − �

me
�1/2	 , x � xm

u�vex + �2
�m − �

me
�1/2	 , xx � x � xm

u�vex + �2
�m − �

me
�1/2	 − u�vex + �2

�EB − �

me
�1/2	 + u�vex − �2

�EB − �

me
�1/2	 , x � xx.

� . �2�

Generally speaking, the number density of electrons can be calculated as follows:

ne�x� = �
−�

�

dvex�
−�

�

dvey�
−�

�

dvezf�x,ve� . �3�

Substituting Eq. �2� into Eq. �3� and integrating, one can arrive at an expression for the number density at all points in space
in terms of the usual error function erf,

FIG. 3. �Color online� Solution to the dimensionless Poisson’s equation for
various values of �E. For positive values of , the solution for each value of
�E is the same.
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ne�x� = ne�xm�exp��m − �

kTE
� 



1 − erf���m − �

kTE
�1/2	 , x � xm

1 + erf���m − �

kTE
�1/2	 , xx � x � xm

1 + erf���m − �

kTE
�1/2	 − 2 erf���EB − �

kTE
�1/2	 , x � xx

� . �4�

Again, this equation is valid between the emitter and collec-
tor; x=0 and x=d, respectively.

Poisson’s equation can be written in terms of the motive
as opposed to the electrostatic potential. In this case, it is
given by

d2�

dx2 = −
e2ne

�0
. �5�

Substitution of Eq. �4� into Eq. �5� and a change in variables
to dimensionless quantities yields the following dimension-
less Poisson’s equation:

2
d2�

d2 = exp���


 
1 − erf��1/2� ,  � 0

1 + erf��1/2� , x �  � 0

1 + erf��1/2� − 2 erf��� − �E�1/2� ,  � x,

,�
�6�

where ����m−�� /kTE is the dimensionless motive, ��x
−xm� /x0 is the dimensionless distance, x0

2

���0kTE� / �2e2ne�xm�� is a scaling factor to convert between
dimensionless distance and actual distance, �E= ��m

−�EB� /kTE, and the initial conditions are ��0�=0 and ���0�
=0. Note that the dimensionless Poisson’s equation given by
Eq. �6� is parametrized by �E �Fig. 3�. At the transition point
xx between regions ii and iii shown in Fig. 2�c� both the
motive and first derivative of the motive are continuous.

Now the value of the current density must be determined.
The current density is determined by the number of electrons
traveling toward the collector at the point of maximum mo-
tive. This value is given by the following integral:

J = e�
0

�

dvex�
−�

�

dvey�
−�

�

dvezvexf�xm,ve� . �7�

Substituting Eq. �2� into Eq. �7� and integrating yields a
manageable expression for current,

J = 2ene�xm�� kTE

2	me
�1/2

. �8�

This J can be related to JES as follows: the electrons with
thermal energy sufficient for emission from the emitter ma-
terial. The saturation current is given by Richardson’s equa-
tion: JES=ATE

2 exp�−�E /kTE�. Additionally, the emitter satu-

ration current can be calculated by evaluating Eq. �7� at the
emitter, x=0,

JES = e�
0

�

dvex�
−�

�

dvey�
−�

�

dvezvexf�0,ve� . �9�

Substituting the distribution function, Eq. �2�, into Eq. �9�,
integrating, and combining the result with Eq. �8�, one can
obtain the following relation between the emitter saturation
current and the output current of the device:

J = JES exp�− �E� . �10�

This result is sensible because the value �E quantifies the
space charge barrier height above the barrier height of the
emitter material. The output current of the TEC is thus de-
creased by the additional space charge barrier.

At this point, we are prepared to calculate the values of
voltage and current density at the critical point, which is a
matter of finding the proper value of �E for a particular out-
put voltage. The following iterative procedure is used.

�1� Choose a value of �E� �0,�E,max�. The procedure to cal-
culate �E,max is discussed in part A of the appendix.

�2� Using the parameter �E, calculate the dimensionless mo-
tive from the dimensionless Poisson’s equation given by
Eq. �6�.

�3� Calculate

E = − d�2	mee
2

�0
2k3 �1/4 JES

1/2

TE
3/4 exp�−

�E

2
� . �11�

�4� Use the E from step 3 as well as the dimensionless
motive found in step 2 to calculate �E; the value of �E
calculated from steps 2–4 will be denoted as �E,1.

�5� According to Fig. 2�d�, �E is given by Eq. �12�. Calcu-
late this value, denoted as �E,2,

�E,2 =
�E

−

kTE
+ �E. �12�

�6� Compare the values of �E,1 and �E,2. Iterate by choosing
different values of �E until �E,1 coincides with �E,2. The
value of �E found in this way is denoted as �ER.

�7� Calculate the output current density at the critical point
by substituting the value of �ER obtained above into Eq.
�10�. According to Fig. 2�d�, the output voltage at the
critical point, VR, is given by
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VR =
kTE�ER + �E − �C

e
. �13�

A special case of the critical point algorithm is addressed in
part B of the appendix.

B. Space charge limited output current characteristic

Once the virtual saturation point and critical point are
known, the space charge limited output current characteristic
is calculated by first specifying a value of current falling
within the space charge limited regime, and then determining
the corresponding output voltage.

Executing the following algorithm yields the space charge
limited output current characteristic.

�1� Choose an intermediate value of current density J
� �JVS ,JR�.

�2� Calculate the value of �E using Eq. �10�.
�3� Using �E as the parameter, calculate the dimensionless

motive by solving Eq. �6�.
�4� Calculate �E using Eq. �12�.
�5� Calculate E from �E using the dimensionless motive

found in step 3.
�6� Calculate C

C = d�2	mee
2

�0
2k3 �1/4 J1/2

TE
3/4 + E. �14�

�7� Calculate �C from C using the dimensionless motive
found in step 3.

�8� According to Fig. 2�c�, the output voltage is given by

V =
kTE��E − �C� + �E − �C

e
. �15�

III. RESULTS AND DISCUSSION

The theory presented in this report was implemented as a
computer program in MATLAB. A TEC with a nitrogen doped
diamond �NDD� emitter electrode was modeled. The emitter
temperature was taken to be 950 K and the collector was
taken to be 300 K. The barrier height of the NDD was con-
sidered to be 1.4 eV, and the collector barrier height was
taken to be 0.6 eV. The emitter was considered to have a
negative electron affinity of 0.5 eV. The emissivity of both
the emitter and collector were taken to be 0.5. The interelec-
trode spacing was 10 �m in the calculations, and initially the
Richardson’s constant of both electrodes was assumed to be
equal to the theoretical value of 120 A cm−2 K−2.

Efficiency of these devices can be estimated by consider-
ing heat transport via the thermionic electrons �QE=J��m

−�E+2kTE� /e� and Stefan–Boltzmann losses from the elec-
trodes �Qr=�0��ETE

4 −�CTC
4 ��, according to Hatsopoulous and

Gyftopoulos5 where �E and �C are the emissivities of the
emitter and collector, respectively. The efficiency is given by

� =
JV

QE + Qr
. �16�

Using this set of parameters, the output power character-
istics of the ideal model, the Langmuir model, and the NEA
model were calculated and are compared in Fig. 4. The maxi-
mum output power of the ideal model is 3.2 W cm−2 with an
efficiency of 37% and occurs at the contact potential of
0.8 V. The NEA model maximum output power is
2.3* W cm−2 with an efficiency of 27*% and occurs at the
virtual saturation point voltage of 0.58* V, where the aster-
isk indicates this value is the physically realized value and
noting that the output current characteristic in this case is not
single valued. The maximum output power of the Langmuir
model is 0.90 W cm−2, its efficiency is 19% and occurs at
voltage of 0.52 V. The maximum efficiency of the Langmuir
model is 20.9% at an output power of 0.84 W cm−2 and oc-
curs at a voltage of 0.66 V. The carnot efficiency of a device
operating between these temperatures is 68%. These data
show that a TEC with a NEA emitter outperforms a TEC
with a conventional emitter in terms of output power and
efficiency because the NEA property mitigates the negative
space charge effect.

In reality, thermionic materials have Richardson’s con-
stants less than the theoretical maximum value. Consider a
TEC with the same parameters as before, but with a Rich-
ardson constant of 10 A cm−2 K−2 for both electrodes. The
resulting output power characteristics from the ideal, NEA,
and Langmuir models are shown in Fig. 5. The maximum
output power of the ideal and NEA case is 0.27 W cm−2 at an
efficiency of 9.5% occurring at the contact potential of
0.8 V. The maximum output power of the Langmuir model
is 0.23 W cm−2 at an efficiency of 8.1% occurring at a volt-
age of 0.70 V. In this scenario, the NEA device meets the
special case conditions, and therefore it has an output current
characteristic identical to that of the ideal case. In fact, the
minimum value of �E for this TEC to meet the special case
condition is 0.14 eV. Furthermore, the Langmuir model ex-

FIG. 4. �Color online� Output power characteristics of nitrogen doped dia-
mond for the following set of parameters: TE=950 K, AE=120 A cm−2 K−2,
�E=1.4 eV, �E

− =0.5 eV, �E=0.5, TC=300 K, AC=120 A cm−2 K−2, �C

=0.6 eV, �C=0.5, d=10 �m.
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hibits a much smaller space charge effect as a result of the
reduction in output current due to a smaller Richardson’s
constant.

IV. CONCLUSIONS

In this report, a theory was developed to model the space
charge limited electron transport across the interelectrode
space of a vacuum thermionic energy conversion device em-
ploying a negative electron affinity emitter material. This
theory was written in terms of algorithms which were imple-
mented as computer programs in MATLAB. Two interesting
mathematical consequences of the theory were introduced;
namely, the nonsingle valued output current characteristic
and the equivalence of the special case conditions of the
virtual saturation point and critical point. Calculations were
performed to model the performance of such a NEA TEC
under reasonable conditions with a nitrogen doped diamond
material as the emitter electrode.

In general, a vacuum TEC with a negative electron affin-
ity emitter material will outperform a TEC with a conven-
tional emitter material. The NEA property mitigates the
negative space charge by lowering the electrostatic boundary
condition just outside the emitter electrode, therefore im-
proving the output power and efficiency of the device over
the conventional device. The presence of NEA mathemati-
cally yields an output current characteristic which is not
single valued, but a simple nonequilibrium thermodynamics
argument yields a single-valued, physically plausible curve.
Additionally, for a set of operating parameters, there exists a
value of the NEA such that the TEC does not experience a
space charge limited mode and therefore operates exactly
like an ideal TEC.

Hydrogen terminated nitrogen doped diamond was con-
sidered as an emitter material in the calculations. For a Ri-
chardson’s constant equal to the theoretical value, the NEA
model outperformed the Langmuir model in terms of output

power and efficiency at the maximum output power. Addi-
tionally, under these conditions, the output current character-
istic was not single valued.

When a Richardson’s constant of 10 A cm−2 K−2 was con-
sidered, the emitter saturation current was reduced and there-
fore the space charge effect was reduced. The NEA model
will not experience a space charge limited mode for values of
�E

− =0.14 eV and above.
From a theoretical standpoint, hydrogen terminated,

doped diamond materials show unique promise as the emitter
material of a vacuum TEC. These materials provide an ap-
proach to mitigate the performance degrading space charge
limitation of the vacuum TEC without requiring submicron
sized interelectrode spacings or plasmas.
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APPENDIX: MATHEMATICAL ANALYSIS
We have collected several mathematical details in the ap-

pendix to present a more complete description of the theory
and to avoid distracting the reader with these mathematical
intricacies. In part A we provide arguments and derivations
to describe the upper bound of �E in the critical point calcu-
lation. In part B we describe the special case condition of the
critical point. In part C the nonsingle-valued nature of the
output current characteristic is discussed. Finally, in part D
we prove the equivalence of the virtual saturation point and
critical point special case conditions.

1. CRITICAL POINT: UPPER BOUND OF �E

For a set of device parameters, there exists an upper
bound on the value of �E, denoted as �E,max. This upper
bound exists as a result of the following restriction: the po-
sition of the emitter is strictly less than the position of xx.
The value of �E,max is essentially the condition which forces
the emitter position and xx to be coincident.

This issue is most easily approached in the space of the
dimensionless motive and dimensionless distance. The crux
of this argument is that the value of E is strictly less than the
value of x. The value of �E,max is the value which results in
the condition E=x. Both E and x can be calculated given
a value of �E. For x, consider the following.

• The dimensionless Poisson’s equation, Eq. �6�, is identical
to Langmuir’s dimensionless Poisson’s equation in regions
i and ii, as are the initial conditions. Therefore, the solution
of both equations is identical in those regions.

• The point x is the boundary between regions ii and iii.
• The point x corresponds to the value of �E on the solution

to Eq. �6�.
• At the point x, the motive and its first derivative are

continuous.

As a result, the point on the solution to Eq. �6� corresponding
to x is coincident with the point on Langmuir’s curve. Thus,
it is established that x and �E are related via the solution to

FIG. 5. �Color online� Output power characteristics of nitrogen doped dia-
mond for the following set of parameters: TE=950 K, AE=10 A cm−2 K−2,
�E=1.4 eV, �E

− =0.5 eV, �E=0.5, TC=300 K, AC=10 A cm−2 K−2, �C

=0.6 eV, �C=0.5, d=10 �m.
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Langmuir’s dimensionless Poisson’s equation. Additionally,
the reader will note that E is related to �E by Eq. �11�. The
lower bound on �E is clearly zero. As �E increases, x be-
comes more negative, approaching the asymptote of Lang-
muir’s dimensionless Poisson’s equation, while E becomes
less negative, approaching zero. Thus, to satisfy E�x, the
upper bound on �E is given by the intersection of the two
curves.

There exists a special case of the critical point algorithm
with physical consequences. The derivation of this special
case can be found in part B of the appendix, and the physical
consequences will be discussed in Sec. III.

2. CRITICAL POINT: SPECIAL CASE

In the space charge limited regime there exists two inde-
pendent ways to calculate the value of �E. A special case of
the critical point algorithm exists when there is no value of
�E such that these two methods yield the same value of �E.
The special case occurs when the following condition is met:

�E
−

kTE
� ��E=0�− d�2	mee

2

�0
2k3 �1/4 JES

1/2

TE
3/4	 , �A1�

where ��E=0 is the solution to Eq. �6� calculated for �E=0. As
a result of this special case condition, the output voltage and
output current are given by the contact potential �VCP��E

−�C� and saturation current density, respectively. In the fol-
lowing discussion, we derive the critical point special case
condition.

The two independent methods used to calculate the value
of �E are articulated in the critical point algorithm found in
Sec. II A. One way to calculate the value of �E is given in
steps 2–4 of the algorithm and is denoted by �E,1. The sec-
ond method is given in step 5 of the algorithm and is denoted
�E,2. Both �E,1 and �E,2 are continuous functions of their
variables and both depend on the value of �E. It has been
shown in part A of the appendix that legitimate values of �E

are bounded above and below. If the difference �E,1−�E,2

does not change sign when evaluated at the bounds of �E,
then the special case occurs because there is no value of �E

such that �E,1=�E,2 or in other words �E,1−�E,2=0.
We quantify this scenario as follows: consider the bound

�E=�E,max. In this situation, the value of �E,1 will always be
equal to �E,max. The value of �E,2 is given by

�E,2 =
�E

−

kTE
+ �E,max. �A2�

Comparing,

�E
−

kTE
+ �E,max � �E,max, �A3�

�E,2 � �E,1. �A4�

Note that the inequality in Eq. �A4� is a general result
when �E=�E,max. Therefore if the same inequality occurs for
the bound �E=0, the critical point special case occurs.

Next consider �E=0. The value of �E,2 is given by

�E,2 =
�E

−

kTE
. �A5�

The value of E from step 3 of the critical point algorithm is
given by

E = − d�2	mee
2

�0
2k3 �1/4 JES

1/2

TE
3/4 . �A6�

The value of �E,1 is determined by substituting the result
from Eq. �A6� into the solution to the dimensionless Poisson
equation evaluated when �E=0. The crux here is to notice
that E in Eq. �A6� does not depend on the value of �E

− but
�E,2 from Eq. �A5� does. Therefore, �E

− can be increased
arbitrarily until the following inequality is satisfied,

�E
−

kTE
� ��E=0�− d�2	mee

2

�0
2k3 �1/4 JES

1/2

TE
3/4	 , �A7�

�E,2 � �E,1. �A8�

As a result, a value of �E
− can be chosen such that the previ-

ous inequality can be forced for both bounds of �E. In this
special case, the output voltage and output current density
are given by the contact potential �VCP��E−�C� and satu-
ration current density, respectively.

There remains the pathological possibility of several roots
within the bounds. If so, an even number of roots would
exist, but we have not encountered this case for the material
parameters of the diamond emitter.

3. ON THE NONSINGLE-VALUED NATURE OF THE
OUTPUT CURRENT CHARACTERISTIC

From Fig. 2, it is clear that the output current character-
istic is not single valued for a certain set of voltages. For
insight, consider the set of voltages for which the output
current characteristic is not single valued. For a particular
voltage, say V0, there are three possible current states in
which the system might exist; shown in Fig. 6�a� as Ja, Jb,
and Jc. Each value of current is a mathematically legitimate
value from an electrostatic perspective. Consider the motive
diagram for each value of output current, shown in Fig. 6�b�.
For all three, the boundary conditions are the same. How-
ever, the differential equations for these boundary conditions
are not. For Ja, the Poisson equation is given by

2
d2�

d2 = exp����1 − erf��1/2�� . �A9�

For Jb and Jc, the form of Poisson’s equation is given by Eq.
�6� but the parameter �E is different for both. Therefore, a
unique differential equation exists for all three values of cur-
rent. For this scenario, the key is not that each point has the
same boundary conditions, it is that each case corresponds to
a unique formulation of Poisson’s equation. Therefore, each
state is mathematically possible.

Despite the mathematical possibility of three unique out-
put current states for a particular value of output voltage, the
physical system will only select one state. It is conceivable
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that the system will oscillate between states; indeed, this be-
havior has been reported in other types of TEC systems.23 To
fully address this problem, the electron transport theory
would need to be derived using the time dependent Vlaslov
equation which is unfortunately beyond the scope of this
discussion. According to Prigogine’s24 work on nonequilib-
rium thermodynamics, a nonequilibrium system in a station-
ary state is characterized by the state the that produces the
minimum entropy. Thus,

Ṡ =
Q̇

T
=

P

T
. �A10�

To minimize this expression, the system will select the
branch corresponding to the minimum output power.

The algorithm and program which produce the output cur-
rent characteristic give the entire curve. The branch associ-
ated with the accelerating regime is given by the saturation
current of the emitter up to the virtual saturation points and
the determination of this branch is independent of the deter-
mination of any other branch. For the space charge limited
regime, the curve is determined by considering the output
current density as the independent variable and calculating
the corresponding output voltage, in which case the result is
single valued. When the entire output current characteristic is
finally assembled by the program, all of the mathematically
possible states are given.

4. EQUIVALENCE OF THE VIRTUAL
SATURATION POINT AND CRITICAL POINT
SPECIAL CASES

According to the theory of the virtual saturation point,1

there exists a special case of the virtual saturation point;
therefore the output current and output voltage are equal to
the saturation current and contact potential, respectively. The

virtual saturation point special case and the critical point
special case are equivalent: the conditions resulting in one
will result in the other. To demonstrate this claim it will be
shown that for a given set of parameters, a special minimum
value of �E

− exists for which both special cases occur. For
values of �E

− greater than this special value, both special
cases occur. For values of �E

− less than this special value,
neither special case occurs, and the device behaves according
to the theory described in this paper. The derivation unfolds
as follows: first, a minimum value of NEA, E,1

− , is estab-
lished such that the virtual saturation point special case oc-
curs. Next, a minimum value of NEA, E,2

− , is established
such that the critical point special case occurs. Finally, it is
shown that E,1

− =E,2
− .

First, recalling the discussion from Ref. 1 consider the
special case condition of the virtual saturation point,

− E� �0
2k3

2	mee
2�1/4TE

3/4

JES
1/2 � d . �A11�

Here, the value of �E
− determines the value of �E, which in

turn determines the value of E. Each relationship is mono-
tonic. Therefore, there exists a unique value of �E

−, referred to
as �E,1

− , such that the equality in Eq. �A11� holds. For values
of �E

− ��E,1
− the virtual saturation point special case does not

occur because the condition in Eq. �A11� is not met. For
values of �E

− ��E,1
− , the virtual saturation point occurs by

definition.
Next, consider the critical point special case. This situa-

tion occurs when the following condition is met:

�E,2 � �E,1,�E = 0, �A12�

where the reader will recall from part B of the appendix the
definitions of �E,2 and �E,1. Note that the value of �E,1 does
not depend on the value of �E

−, but the value of �E,2 does.
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FIG. 6. �Color online� �a� Output current characteristic showing nonsingle valuedness. �b� Different motive diagrams for the same value of output current in
the space charge limited mode for a NEA TEC. The dimensionless Poisson’s equations are different for these motives. The inset shows an enlarged view of
the different motives.
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Moreover, the value of �E,2 depends monotonically on the
value of �E

−. Therefore, there exists a minimum value of �E
−,

referred to as �E,2
− , such that the equality in Eq. �A12� is

satisfied. For values of �E
− ��E,2

− , the inequality is not satis-
fied and the critical point special case does not occur. For
�E

− ��E,2
− , the inequality is satisfied and the critical point spe-

cial case occurs by definition. At this point, it has been
shown that there exists minimum values of �E

− for each spe-
cial case such that each occurs.

The next step is to show that those values are equal. Con-
sider the virtual saturation point algorithm when �E

− =�E,1
− . In

the first step, the value of �E is calculated,

�E,V =
�E,1

−

kTE
. �A13�

Next, the solution to Eq. �A9� is used to determine the cor-
responding value of E, denoted here as E,V. Finally, since
�E

− =�E,1
− , the equality from Eq. �A11� holds,

− E,V� �0
2k3

2	mee
2�1/4TE

3/4

JES
1/2 = d . �A14�

Next, consider the critical point algorithm when �E
− =�E,2

− .
In this situation, the critical point condition is met when �E

=0. Thus, the critical point value of E �denoted by E,R�
determined by Eq. �11� is given by

E,R = − d�2	mee
2

�0
2k3 �1/4 JES

1/2

TE
3/4 . �A15�

Notice that this expression can be rearranged to yield Eq.
�A14�. Therefore, E,R=E,V. Since �E

− =�E,2
− , the equality in

Eq. �A12� holds. Since �E=0, the critical point dimensionless
Poisson’s equation given by Eq. �6� is equal to the virtual
saturation point Poisson’s equation given by Eq. �A9� and so
the solutions to both will be equal. As a result, the value of
�E �referred to as �E,R� corresponding to E,R will be

�E,R = �E,V �A16�

Recalling Eq. �A12�, Eq. �12� can be substituted in for �E,2

with the condition �E=0 yielding

�E,2
−

kTE
= �E,V. �A17�

Substituting Eq. �A13�, one has

�E,2
− = �E,1

− . �A18�

Therefore it has been shown that the virtual saturation point
special case and critical point special case are equivalent.
The major result is as follows: in the event of the special
case, the virtual saturation point and the critical point occur
coincident with the contact potential point on the output cur-
rent characteristic of the ideal model. Thus, the NEA device
operating in the condition given by Eq. �A11� does not ex-
hibit a space charge limited mode in the sense that it per-
forms identically to an ideal device.
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