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Localized emission from flat diamond cathodes
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Abstract

We analyze steady-state field emission from an n-type semiconductor under the assumption that its surface presents no barrier for electron

emission from the conduction band into the vacuum. We construct a classical Lagrangian field theory for the coupled electric and quasi-fermi

potentials and use it to show that uniform emission is unstable against laterally nonuniform perturbations. We use a two-parameter model of

normal emission current to show that the Lagrangian of the linearized system is minimal when all electrons are emitted from a single site. In

addition to this intensely localized emission, we show the normal electric field at the surface is moderately enhanced at the solitary emission site

even though the surface itself is planar. We use the result to explain the isolated emission sites observed in nanocrystalline n-type diamond films.

D 2005 Elsevier B.V. All rights reserved.
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1. Emission from planar cold cathodes

Diamond and some other materials can exhibit negative

electron affinity (NEA). Electrons can be extracted from such

diamond surfaces by a relatively low electric field at room

temperature [1,2]. For some materials such as nanocrystalline

diamond, the electrons are not emitted uniformly but only from

small isolated sites. Efforts to develop nanocrystalline cathodes

that emit uniformly have improved every measure of material

and surface quality except emission uniformity [3].

Previously, we investigated the time dependence of pertur-

bations of a one-dimensional equilibrium solution of the drift

diffusion equations [4]. We reported that a zeroth order electric

field could make small nonuniformities grow in time, but that

theory did not allow us to determine the final, i.e., observable,

configuration of the system [4].

In this report we revisit the question of finding a final

configuration for the system, but instead of considering time

dependent perturbations of the uniform system, we begin with

the set of all linearized steady-state solutions and search for the

one that is physically realized. We exploit electrostatic

boundary conditions at the semiconductor-vacuum interface
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to analytically simplify expressions for the field energy density

and the potential energy density enough to formulate a

Lagrangian for the system. Consideration of the resulting

Lagrangian action shows that uniform emission is unstable

against every lateral nonuniformity. Finally, we show that for

material and experimental parameters typical of low-field

electron emission from n-type nanocrystalline films at room

temperature, the actual minimum of the Lagrangian occurs

when all current is emitted from localized sites that are as small

as possible and as widely separated as possible.

2. Ideal steady-state emission

Let a planar interface at z =0 separate diamond in the half

space z<0 from vacuum in the half space z>0. The electric

potential W obeys Poisson’s equation which requires the

divergence of the electric displacement and the charge density

to be equal

rI � �rWð Þ ¼ q ð1Þ
where e is the local dielectric permittivity

� ¼ �0; for z > 0 and ð2Þ

� ¼ �r�0; for z < 0; ð3Þ
and �r is the relative dielectric constant of the semiconductor.
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For an n-type semiconductor that is electrically neutral at

equilibrium,

NþD ¼ niexp
� Ei � EFð Þ

kBT
ð4Þ

relates the concentration of ionized donors ND
+ to the intrinsic

electron concentration ni, the intrinsic level Ei, the Fermi level

EF, and the product of the Boltzmann constant times absolute

temperature, assuming that the density of electrons is low

enough to obey Boltzmann statistics.

For a steady-state configuration near equilibrium, EF can be

replaced with a local quasifermi level EFn where both Ei and

EFn vary with location. We can write the perturbed electron

density as

n ¼ NþD exp
W� U
VT

;

where W =�DEi /q and U =�DEFn /q have the units of volts

and represent the changes of Ei and EFn from their equilibrium

values, and VT=kBT mq is the usual thermal voltage. In this

expression, neutrality occurs wherever W =U and equilibrium

occurs where both W and U also vanish.

In the case of a uniform macroscopic applied field of

magnitude Evac, we write the electric potential

W ¼ Evaczþ w for z > 0;

as the sum of the familiar one-dimensional response Evacz,

which is large for zH0, plus a possible non-uniform

perturbation w which we assume to be small everywhere

compared to VT and to vanish for zH0. Now continuity of the

zeroth order normal electric displacement requires

W ¼ Einzþ w for z < 0

where

Ein ¼
Evac

�r

is familiar from the usual 1-D analysis of such problems. With

these choices of W for z =T0, the zero of electric potential

corresponds to the unperturbed intrinsic level at the interface.

Deep within the semiconductor, where w vanishes, charge

neutrality requires the zeroth order U and W to coincide so we

write

U ¼ Einzþ / for z < 0;

where / also vanishes for zH0 and is small compared to VT,

but allows for a possible perturbation near the surface. With

this choice of U, the zero of the quasi-fermi potential

corresponds to the unperturbed Fermi potential at the interface.

We neglect holes, so that the charge density (ND
+�n)q

becomes

q ¼ qNþD 1� exp
W� U
VT

� �
; ð5Þ

where q >0 is the magnitude of the fundamental charge,
In steady state, the charge density does not change with time

so that fltq =0 and

rIJY ¼ 0 ð6Þ
everywhere. In quasi-equilibrium, the total current density in

the semiconductor is

J
Y ¼ � qnvY for z < 0; ð7Þ

where

vY ¼ lrU ð8Þ

and l is the mobility of free electrons [5]. We assume that Evac

is high enough and electron emission is low enough to neglect

all charge in the vacuum, so that J
Y ¼ 0 and q =0 for z>0:

Once an electron is emitted, it is swept away before significant

charge can accumulate.

3. Lateral non-uniformities

In the vacuum, W is large, but since q =0 for z >0 by

assumption, Poisson’s equation reduces to Laplace’s equation

r2w ¼ 0 ð9Þ

Both W and U are large for zb0, but their difference

W�U =w�/ is small inside the semiconductor. For z <0, the

small magnitude of w�/ allows linearization of the continuity

equation

r2
/ þ gBz w� /ð Þ ¼ 0 ð10Þ

and Poisson’s equation

r2w� j2 w� /ð Þ ¼ 0; ð11Þ

where we have defined

j ¼ 1

LD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qNþD
�r�0VT

s
ð12Þ

and

g ¼ Ein

VT

¼ Evac

�r�0VT

ð13Þ

both to have dimensions of reciprocal lengths and units of

reciprocal meters in SI.

Eqs. (9) (10), and (11) are satisfied by linear combinations

of terms like

wk;out¨uk x; yð Þe�kz in z > 0; ð14Þ

wk¨uk x; yð Þepz in z < 0; ð15Þ

/k¨uk x; yð Þepz in z < 0; ð16Þ

where p =pk is a wavenumber in the normal direction z that

solves the homogeneous algebraic system

� k2 þ p2k
� �

wk � j2 wk � /kð Þ ¼ 0; ð17Þ

� k2 þ p2k
� �

/k � gpk wk � /kð Þ ¼ 0; ð18Þ
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ck, hxk and hyk are constants, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the lateral

component of the wavevector inside the semiconductor, and

uk x; yð Þ ¼ cos kxxþ hxkð Þcos kyyþ hyk
� �

: ð19Þ

Eqs. (17) and (18) have four solutions but only two of them

result in finite w(�V) and /(�V):

pk ¼ k with
/k

wk

¼ 1; ð20Þ

and

pk ¼
1

2
gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4j2 þ 4k2

p� �
with

/k

wk

¼ gpk
j2

: ð21Þ

These two normal wavenumbers are compared in Fig. 1 as

functions of k, the lateral wavenumber.

For each kx, ky, the general solution therefore contains a

linear combination of terms like

wk;out¨cke
�kzuk x; yð Þ

wk¨ ake
kz þ bke

pkz
� �

uk x; yð Þ

/k¨ ake
kz � bk

gpk
j2

epkz
� �

uk x; yð Þ

for every mode k, if it is to include both solutions 20 and 21

inside the emitter, according to Eqs. (15) and (16).

The coefficients ak, bk, and ck are not independent. The

electric potential must satisfy two boundary conditions at the

interface: continuity of the normal displacement ��flzw and

continuity of the lateral field � (flxw, flyw) require that

ak

ck
¼ � ak

pk � k
;

bk

ck
¼ 1þ ak

pk � k
;
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Fig. 1. k and pk in (Am)�1 as functions of k in (Am)�1 for room temperature

diamond with �r =5.7, ND
+=1014/cm3, and Evac=1 V/Am, which correspond to

j =3.49/Am, g =6.75/Am.
where

a ¼ �r þ 1

�r
: ð22Þ

These two constraints will be used to rewrite ak and bk in terms

of ck.

In terms of the resulting ck, the general solution of the

system is

w ¼ ~
kx;ky

ckukðx; yÞe�kz in z > 0; ð23Þ

w ¼ ~
kx;ky

ckuk x; yð Þ ekz þ ak
pk � k

ekz � epkz
� �	 


in z < 0; ð24Þ

/ ¼ ~
kx;ky

ckuk x; yð Þ ekz þ ak
pk � k

ekz þ gpk
j2

epkz
� �	 


in z < 0;

ð25Þ

where uk(x,y), k and pk depend on kx, ky as given by Eqs.

(19)–(21), and the ck have the units of volts.

For any arbitrary set of {ck, hxk, hyk}, Eq. (23) in the

vacuum and Eqs. (24) and (25) in the semiconductor satisfy the

homogeneous system comprising the linearized electrostatic

Eqs. (9) (10), and (11) together with the appropriate boundary

conditions at z=0 and |z| =V.

4. Spontaneous non-uniformities

Eq. (1) is equivalent to asserting that the physical W is a

variational minimum of an appropriate action functional. This

Lagrangian formulation provides an alternative analysis of the

system response to Evac that we will use to determine ck, which

are the degrees of freedom remaining after the differential

analysis of the previous section. To first order in the small

quantities, w and /, Eqs. (23) (24), and (25) solve both

Poisson’s equation and charge continuity equation for z m0, and

satisfy the electrostatic boundary conditions at z=0 on normal

displacement and tangential field.

The action functional Ltot which we now construct is an

integral that explicitly excludes the interface, so that our action

cannot account for the boundary conditions at the interface.

This is of no concern since we will ultimately formulate the

minimization in terms of the coefficients ck, so that our result

will satisfy the boundary conditions at z =0 because Eqs. (23)

(24), and (25) satisfy them.

In the vacuum, the appropriate action is

Lout ¼ Tout ¼
Z
z>0

�0
2
jrwj2d3r; ð26Þ

as can be shown by taking its variation, which is equal to

dTout ¼
Z
z>0

rI �0
2

B

B rwð Þ jrwj2
� �

dw3r

¼ �
Z
z>0

rI �0rwð Þdw3r;
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Fig. 2. The normalized coefficient of ck
2 in the system Lagrangian as a function

of k is negative for �r =5.7 and all integer combinations of j and g from 1 to 10,

in units of 1/Am, which suggests that the coefficient of ck
2 is always negative.

The energy of any mode with such a negative coefficient is highest when its

amplitude ck vanishes.
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and which vanishes for arbitrary dw if and only if Eq. (9) is

satisfied. Inside the semiconductor, the action is

Lin ¼ Tin � Vin; ð27Þ

where the field energy inside the semiconductor

Tin ¼
Z
z<0

�r�0
2
jrwj2d3r;

has the same form as Tout. The potential energy

Vin ¼ �
Z
z<0

�r�0j
2 1

2
w2 � w/

� �
d3r;

involves only the potential itself and is independent of lÃ, so

its variation

dVin ¼ �
Z
z<0

�r�0j
2 w� /ð Þdwd3r

requires no integration by parts and therefore no special care to

exclude the interface.

The observable physical configuration of the system

minimizes the Lagrangian combination

Ltot ¼ Tout þ Tin � Vin; ð28Þ

of Eqs. (26) and (27), provided that we restrict ourselves to the

w and / of Eqs. (23) (24), and (25). The first two terms of Eq.

(28) are the integrals of the usual electrostatic field energy

density 1
2
D
Y
IE
Y ¼ 1

2
� �rwð ÞI �rwð Þ. The last term is the

potential energy of the net space charge density, represented by

�j2(w�/) in Eq. (11), interacting with the local electric

potential w in the semiconductor.

The first two terms of Ltot are positive semi-definite, and they

vanish only for constant electric potential; they penalize any

change of the potential. In contrast, the third term, �Vin, can be

negative and this pivotal in our theory: if w and / can distort

themselves to make this third term in Eq. (28) negative enough

to compensate for the increased field energy Tout+Tin of the

distortion, then the distorted state is energetically preferred.

In terms of Eqs. (23) and (24), the first two of these integrals

are

Tout ¼
�0L

2

8
~
k

c2kk; ð29Þ

Tin ¼
�r�0L

2

8
~
k

c2k k þ a2k2

pk

	 

; ð30Þ

which can be combined and simplified into the field energy

Tin þ Tout ¼
�r�0L

2

8
~
k

c2k
ak ak þ 2pkð Þ

2pk
; ð31Þ

of the system, where a is defined by Eq. (22).

The potential energy

Vin ¼
�r�0L

2

8
~
k

c2k

j2 pk þ akð Þ2 � pkk
h i
2pkk pk � kð Þ þ agk ak þ 2pkð Þ

p2k � k2

0
@

1
A

ð32Þ
can written in terms of the same quantities with Eqs. (25) and

(24). Note that Vin�0 because pk�k, a >1, and the quantities

k, g, j are always positive.

We can combine these results to write the system

Lagrangian

Ltot ¼
�r�0L

2

8
~
k

c2k
ak ak þ 2pkð Þ

2pk
�

j2 pk þ akð Þ2 � pkk
h i
2pkk pk � kð Þ

0
@

� agk ak þ 2pkð Þ
p2k � k2

!
: ð33Þ

5. Spot emission

Our theory predicts that the perturbations minimize Ltot by

diverting the uniform current density of the unperturbed state

into isolated emission sites, as we now show. For small k, Eq.

(33) approaches

� c2kL
2�r�0j2

16k
:

For large k, Eq. (33) approaches

� c2k aþ 2ð ÞaL2�r�0k
16

:

Both limits are negative and numerical experiments such as

Fig. 2 suggest that the energy of every mode is negative for all

combinations of material parameters and experimental condi-

tions in the vicinity of �r =5.7, Nd=10
20/m3, and Evac=10

6 V/

m, which correspond to a =1.18, j =3.49/Am, and g =6.75/Am,

at room temperature. The energy of any such mode is highest

when its amplitude ck vanishes. We conclude that in any

observed equilibrium configuration, the magnitude |ck| of every
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mode is as large as feasible and is determined by some

constraint on the system. One such constraint is that the actual

emitted current must equal the current supplied to the surface

by the unperturbed uniform current at zb0.

In order to investigate the relation between Ltot and electron

emission, we introduce a two-parameter model of normal

electron emission. A family of normal electron emission

patterns that preserves average emission density can be

represented along the x axis as a sum

j ¼ rgVT 1þ 2 ~
kx¼kR

kx¼kL
cos kxxð Þexp � R2k2x =2

� � !

over modes of wave number kx where

kL ¼ 2k=L

kR ¼ 2k=R;

R�L, and r =qND
+l is the usual ohmic conductivity. Any such

j is a 1-D array of emission sites with variable radius R,

variable pitch L, and fixed average normal emission density

bj�=rEin=rgVT. This family includes periodic undulations that

range from a simple sinusoid at R =L to an array of delta

functions for RbL, as Figs. 3 and 4 show.

The kth coefficient jk of normally emitted current can be

related to the system coefficients ck, by combining Eqs. (24)

(25) (7), and (8) to obtain

jk ¼ ckrk 1þ a
k � g
pk � k

þ agpk
j2

pk � g
p� k

� �

and solving for ck in terms of jk. The resulting ck can be

substituted into Eq. (33) to obtain an expression for the total

system energy as a function of the R and L of our model

emission pattern for a given average emitted current. This
x
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Fig. 3. Cross section of the Gaussian model of normally emitted current density

for fixed R =2l and three different values of L=5, 10, 15 in units of microns,

shows how the model allows the density, i.e., pitch, of emission sites to be

varied.
energy is a double sum over kx and ky, which we plot in Fig. 5.

Numerical experiments such as shown in Fig. 5 suggest that the

system energy corresponding to the trial emission pattern is

minimized by large LYV and small RY0.

If the minimum system energy occurs for vanishing R =0

and L=V, then the details of the model j are irrelevant, and we

infer that the result is general.

Our model of the normal emission pattern can also be used

to investigate the pattern of field enhancement corresponding

to the emission pattern. For any finite R and L, the normal

electric field can be obtained from the jk since the first order

electric potential just outside the interface for y =0 is

~
kx

ckexp � kxzð Þcos kxxð Þ
1
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Fig. 5. Normalized Ltot as a function of R and L.
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since the ky m0 components can be neglected on this cross

section. The normal electric field

j ¼ rgVT 1þ 2~
2

kcos kxð Þexp � R2k2=2
� � ck

jk

� �

is the z component of Eq. (7) evaluated at z=0. The first term

j0=rgVT is the k =0 component of j and coincides with

unperturbed normal electric field and the cross section of j(x)/
j0 of Fig. 6 shows that the electric field is enhanced at the

emission site, but not as much as the emitted current.

Fig. 2 shows that the mode energies are least negative at a

wavenumber of order j, which suggests that the corresponding

modes are most sensitive to forces neglected in this analysis. If

such forces ever make the mode energies positive, this seems

most likely to be observable at lateral wavenumbers near k =j.
Therefore it may be possible to experimentally find a minimum

in intensity of the normal electron emission pattern at a lateral

period of 2k /j�2 Am.

6. Conclusion

Emission sites have zero radius in the proposed theory.

Quantum effects would certainly impose a non-zero minimum,

but our physical model also neglects nonlinearities, maximum

electron wavenumber, emitter thickness, and surface irregular-

ities. It is not known whether any of these effects restricts the

minimum radius to be larger than the quantum limit.

Experimentally, the emission site radius is too small to have

been measured yet.

Experimentally, NEA is necessary but not sufficient for spot

emission, which is always observed for nanocrystalline

diamond but not for polycrystalline diamond at red heat.

However both exhibit NEA in photoemission studies. In this

report, we assume that the material itself is uniform. This

assumption is more appropriate for nanocrystaline diamond,

and the courser grain boundaries of polycrystalline diamond

may obstruct the development of long-range order.
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