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ABSTRACT  

Over the past few years the advent of atomic layer deposition (ALD) technology has opened new capabilities to the field 
of coatings deposition for use in optical elements. At the same time, there have been major advances in both optical 
designs and detector technologies that can provide orders of magnitude improvement in throughput in the far ultraviolet 
(FUV) and near ultraviolet (NUV) passbands. Recent review work has shown that a veritable revolution is about to 
happen in astronomical diagnostic work for targets ranging from protostellar and protoplanetary systems, to the 
intergalactic medium that feeds gas supplies for galactic star formation, and supernovae and hot gas from star forming 
regions that determine galaxy formation feedback. These diagnostics are rooted in access to a forest of emission and 
absorption lines in the ultraviolet (UV)[1], and all that prevents this advance is the lack of throughput in such systems, 
even in space-based conditions. ��We outline an approach to use a range of materials to implement stable optical layers 
suitable for protective overcoats with high UV reflectivity and unprecedented uniformity, and use that capability to 
leverage innovative ultraviolet/optical filter construction to enable astronomical science.  These materials will be 
deposited in a multilayer format over a metal base to produce a stable construct. Specifically, we will employ the use of 
PEALD (plasma-enhanced atomic layer deposition) methods for the deposition and construction of reflective layers that 
can be used to construct unprecedented filter designs for use in the ultraviolet.  

  

Keywords: Plasma Enhanced, Atomic Layer Deposition, Far Ultraviolet, Reflective Coatings, Interference Filters, 
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1. INTRODUCTION  
NASA is interested in fostering the development of innovative low-TRL techniques that support the maturation of key 
technologies to the point at which they are feasible for implementation in space flight missions.  The case for this need in 
the UV has been made by Scowen et al [2] where, as part of a COPAG (Cosmic Origins Program Analysis Group) RFI to 
the astronomical community, next generation science cases were submitted to NASA for what new UV capabilities 
would be necessary to address pivotal science in the next decade.   While no specific UV space mission has been 
identified by the Decadal Survey on Astronomy and Astrophysics, the need for the development of this technology has 
been made clear in the NASA Space Techology Roadmap (2012), and places priority on the improvement of coating 
technologies for FUV reflectivity and associated filter design and manufacture in the same passband.  It is this need that 
our work seeks to address. 

Our work seeks to demonstrate several things: 

• That films of material can be deposited as a demonstration of the approach using PEALD (plasma-enhanced 
atomic layer deposition) techniques to produce low-loss oxide films of materials such as Si, Hf and Al.  The 
resulting coatings will be of a thickness and a purity far higher than can be delivered by current techniques that 
involve sputtering deposition. 
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• That using the same deposition techniques, PEALD can be used to deposit thin (10s of nm) low-loss films of 
fluoride materials such as MgF2, LiF, AlF3, LaF3, CaF2, BaF2 that will be used as protective overcoats for 
materials that can easily be oxidized by exposure to air. 

• That Al deposition, protective layer deposition and characterization can be completed in-situ. Such a controlled 
environment will minimize the oxidation forming undesirable compounds, to improve the reflectivity of the 
resulting films and their interfaces by reducing scattering and adsorption. 

• That deposition of such protective overcoats over aluminum metal can be achieved with PEALD to provide a 
sufficiently crystalline, uniform and stable structure that extend the range of diagnostic emission and absorption 
lines available for science. 

• To apply multiple alternating layers of metals and dielectrics using our PEALD approach to produce multi-
cavity structures exhibiting very high performance. This goal is currently limited by the inability to deposit very 
thin layers with great accuracy, while demonstrating film toughness and 'bulk' thin film material losses. 

• To apply the PEALD approach to the construction of multi-layer dielectric layers to act as reflection filters or 
high reflectors in narrow band systems. 

• To similarly construct multi-layer broadband reflective surfaces which are thought to exhibit higher 
performance than metal-based mirrors (using a short wave extension to prototype dichroics our group is already 
developing for space).  

The deposition techniques listed above have been observed in several independent test cases, and the technology 
approach has been designed and formulated using computer modeling.  As such we can assign a TRL of 3 to the use of 
ALD materials in this manner, in accordance with the typical definitions used by NASA.  This program will demonstrate 
the ALD approach to deliver low-loss oxide films, and then merge that approach with deposition over metal to produce 
multilayer filters that can isolate specific emission lines for scientific use in space (where one has to observe the FUV 
due to atmospheric absorption).  Our goal is to demonstrate the approach as a proof of concept to raise the technology to 
a TRL of 4 by the end of the program. 

The improvement in performance in surface reflectivity, combined with the advances in FUV filter design and 
construction using the same deposition techniques, provide the promise of a dramatic increase in performance and 
reliability in space-based FUV mission design.  We will be investigating whether the application of fluoride-based 
coatings using our approach can provide better coating techniques that will allow better, more controlled and higher 
throughput coatings.  We believe the use of ALD to construct both reflective layers and multilayer Fabry-Perot cavities 
using heretofor untested fluoride-based materials will provide the desired performance improvement which NASA seeks 
because it will deliver thicker, more stable, more uniform ALD coatings using fluorides that can produce high UV 
reflectivity. 

To be clear, the techniques we will be using have already been demonstrated to work individually – the goal of this work 
is to combine these techniques in a single working environment to produce the proposed end products: thicker, more 
stable, more uniform ALD coatings using fluorides that can produce high UV reflectivity, and to use that capability to 
build alternate metal / dielectric filter assemblies that provide high efficiency narrowband filters for use in the FUV.  Our 
goal is to demonstrate the ability to provide production reliability for our processes so they can be used for instrument 
development for future space missions. 

1.1 Filter Coatings and Design 

Reflective coatings in the UV have typically employed aluminum with a magnesium fluoride protective overcoat to 
prevent a highly absorbing oxide layer from building up on the aluminum surface. Magnesium fluoride is highly 
transmitting throughout the UV but cuts off sharply below 120 nm.  Aside from the short wavelength cut-off, 
magnesium fluoride layers can be tuned to optimize reflectance near a single wavelength, reflectance maxima peak near 
90% though more typically reflectance between 85-90% is achieved. Such performance gains, when applied to larger 
astronomical optics and multiple surfaces, can enhance performance by 20-50%.  Broadband transmissive coatings are 
mainly used as an anti-reflection coating and/or a protective coating for hygroscopic window/lens materials. As with 
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broadband reflective coatings, these provide gains of a few percent per surface, with an impact that grows when 
additional optical components are added. 

 
     Figure 1.  At Left: Cross-section SEM images of Al/Si, At Center and Right: MgF2/SiO2/Si. Varied deposition temperatures 

achieved different film morphologies.  These coatings are not optimized for minimal thickness as we will do in this project. 

Past approaches applied to coating bare aluminum surfaces have suffered from a number of issues and have not met 
theoretical expectations[3]. One of the primary degradation mechanisms is related to the oxidation of the Al surface. Even 
a 5nm oxide results in a 3% reflectivity reduction at 193 nm wavelength and a > 30% reduction at wavelengths less than 
140 nm. In situ deposition of a protective coating layer is required, but even here there are restrictions that have limited 
past approaches based on physical deposition. The morphology of deposited Al reflective surfaces substantially degrades 
at elevated temperatures (maintaining a temperature less than 100C is recommended). Sputtered or evaporated protective 
layers at these low temperatures typically exhibit columnar structure and oxidation can proceed through grain boundary 
diffusion leading to Al surface oxidation (see Figure 1). The low deposition temperatures and uniform coverage of 
plasma enhanced ALD holds the potential to overcome these limitations. Based on our models, PEALD oxide protective 
layers (SiO2 or Al2O3) can extend the cutoff to less than 190nm and PEALD fluoride coatings (MgF2, AlF3, LaF3, etc.) 
hold the potential to extend the cutoff to less than 120 nm. In addition, a thin oxide could be used to protect the fluoride 
layers for some applications. The fact that pinhole free PEALD layers can routinely be obtained at thicknesses less than 
5nm is another significant advantage when designing the coating thickness for a specific application. 

Unlike the broadband filters, conventional UV bandpass filters require dielectric multilayer coatings. High index layers 
are highly absorbing, limiting their use in transmission filters. A lack of options for a mix of high and low index 
materials complicate the design of filters and dichroics.  In addition, the preservation of wavefront error becomes more 
difficult as the number of layers increases, which will be critical for future diffraction limited system in space to produce 
filters that do not contribute to the overall wavefront error.  Narrower high index layers improve performance at the cost 
of increased requirements for deposition thickness control and uniformity. Reflective bandpass and blocking filters can 
achieve good performance, although it is hard to incorporate these into compact optical designs. Bandpass filter 
requirements are application specific (e.g. centered on key astrophysical emission lines or bands, line-free regions or 
absorption features). Reflective narrowband and dichroic/red-rejection filters have been designed and implemented using 
standard deposition techniques (electron beam with and without ion-assist, thermal evaporation). In general, these filters 
have never achieved theoretical performance because maintaining layer thickness control and uniformity of film optical 
constants is challenging using these deposition techniques. With the availability of atomic layer deposition, the empirical 
limits of coating performance can be re-evaluated, and new designs incorporating single atom nano-layers can now be 
implemented. 

1.2 Plasma-Enhanced Atomic Layer Deposition 

Research suggests ALD will have favorable implications for optical coatings. In particular, ALD not only produces 
conformal and uniform films with precision control of the thickness to a fraction of a monolayer but also allows for the 
tuning of films properties. For example, a recent study by Yang et al.[4] has shown the index of refraction of Al2O3 varies 
from 1.61 to 1.68 as the deposition temperature ranges from 110 to 300 °C. Moreover, there is evidence that ALD 
deposited coatings show extraordinary resistance towards concentrated alkali solutions, various chemical etchants, and 
solvents as shown by Du et al.[5]; this research demonstrate ALD films were able to protect aluminum mirrors from 
dissolution for 30 times longer than those with e-beam sputtered films. 

Plasma-enhanced ALD (PEALD) is an energy-enhanced ALD technique that utilizes the reactivity of plasma radicals to 
drive the surface reaction rather than thermal energy like traditional ALD (see Figure 2).  Consequently, this system has 
several key advantages over traditional thermal ALD and other vapor-phase deposition techniques: 
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atmospheric models of habitable zone planets.  A candidate future UV mission employing narrowband moderate 
resolution (~10 km s-1), low-background equivalent flux levels (≤ 10-18 erg cm-2 s-1 Å-1 in 104 sec), and photon-counting 
detectors (Δt ≤ 1 sec) would enable such a survey of the known M-dwarf exoplanetary host stars within 50 pc (and K-
dwarfs to > 200 pc), which would include all of the systems that can be studied in detail by JWST. The UV bandpass 
offers the best set of chromospheric, transition region, and coronal activity diagnostics in low-mass stars (the HI Lyman 
series, FeXVIII λ97.4, CIII λ97.7, OVI λ103.2, SiIII λ120.6, OI λ130.4, CII λ133.5, FeXXI λ135.4, CIV λ155.0, HeII 
λ164.0, and MgII λ280.0) that are critical to the characterization of the energetic radiation environment. 

Transiting Planets  

Short period planets are exposed to strong UV radiation fields from their host stars, and this energy deposition can 
inflate the planetary atmosphere. UV observations can probe the extended upper atmospheres of the planets, providing 
unique access to the strong resonant transitions of the most abundant atomic constituents that can be observed in 
absorption during transit (e.g., H, O, C+, Si2+, and Mg+ have been detected so far[21,22,23,24]).   In order to probe the details 
of atmospheric escape from “hot Jupiters”, and eventually terrestrial mass planets, a new observational capability would 
be required. Observations of Rayleigh scattering are the most direct means of determining the atmospheric scale height 
for both Jovian and terrestrial planets[25,26], an essential parameter for the interpretation of near- and mid-IR molecular 
transmission spectra from future (or proposed) NASA missions such as FINESSE and JWST. High-sensitivity, moderate 
spectral resolution near-UV (170 – 400 nm) narrowband observations would allow us to observe Rayleigh scattering of 
H2, haze, and possibly CO2 and N2 atmospheres at the wavelengths where this mechanism has the largest observable 
signature[27]. 

Measuring the Radial Structures and Elemental Abundances of Gas Disks  

At the distances of typical star-forming regions (e.g., Taurus-Auriga or the Orion Nebula Cluster), 1 AU corresponds to 
an angular scale of < 0.01ʹʹ. ALMA is carrying out high-resolution molecular spectroscopy of protoplanetary disks, but 
is less sensitive to warm/hot gas at terrestrial planet-forming radii. Therefore, if one wishes to probe molecules in the 
region of terrestrial and giant planet-formation, UV and IR spectroscopy will be the technique of choice for the 
foreseeable future. UV narrowband observations are a unique tool for observing the inner molecular disk as the strongest 
electronic band systems of H2 and CO reside in the 100 – 170 nm bandpass[17,28].  The composition and physical state 
(e.g., temperature, turbulent velocity, ionization state) of a cross-section of the circumstellar environment can be probed 
using high-resolution absorption line spectroscopy of high-inclination (i > 60�) disks. Spectral coverage in the 91.2 – 
115 nm bandpass is particularly important for this work as the bulk of the warm/cold H2 gas is only observable at λ < 
112 nm (via the Lyman and Werner (v’ - 0) band systems). 

2. TECHNICAL DETAILS AND METHODS 
The Nano Science Laboratory (NSL) at Arizona State University (ASU) maintains a multi-chamber UHV system, and is 
managed by Nemanich. The system, pictured in Figure 4, includes a linear UHV sample transfer and chambers for 
surface processing, film growth, and electronic structure analysis. Currently, the chambers consist of the following: 
remote plasma processing for surface treatment, remote plasma enhanced atomic layer deposition, reactive molecular 
electron beam deposition, electron beam metal deposition, electron-cyclotron resonance (ECR) deposition of boron 
nitride, UV photoemission spectroscopy (UPS), x-ray photoemission spectroscopy (XPS), and auger electron 
spectroscopy (AES). Ex-situ characterization via atomic force and related probe microscopy techniques is also available 
at this facility.  This integrated system has unique capabilities for coating freshly deposited metal layers, where 
maintaining a clean surface and interface is crucial. 

Oxide PEALD. This chamber is used to grow metal oxides or alloys with precise thickness control, including HfO2, 
Al2O3 and SiO2, ZnO, and Ga2O3. 

Proposed fluoride PEALD (Plasma-Enhanced Atomic Layer Deposition). PEALD is used to grow metal fluorides or 
alloys with precise thickness control. This will include the proposed materials i.e., MgF2, LiF, AlF3, LaF, CaF2, and BaF2 
as described by the deposition process below. 

Proposed Metal PEALD. N2, H2, and NH3 can also be used as reducing agents to grow metals in ALD as discussed 
below. This system is also used for surface preparation or post-deposition processing using the remote plasma reducing 
agents. This system will be modified to enable Al deposition using trimethylaluminum (TMA) and hydrogen.  The 
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modification will include an exhausted cabinet to hold the pyrophoric TMA, a system level upgrade to enable computer 
control of gas delivery and plasma, and a modified pumping system (upgraded dry pumping).  

 

 

 
     Figure 4. Photograph and schematic of the integrated processing, growth, and characterization system of the Nanoscience 

Laboratory. The new ALD chambers are indicated in the schematic. The other chambers are all used in the research outlined in 
section 2. 

 
E-beam. This deposition system is equipped to deposit five metals, including Al, Au, Cu, Ti, and Ta. The Al source will 
be employed prior to availability of the PEALD Al deposition. 

XPS (X-ray Photoelectron Spectroscopy). XPS can be used to characterize the electronic state, chemical state, elemental 
composition, and empirical formula of the elements in the measured material. This technique will be used to monitor 
interface contamination and dielectric film properties and thickness.  The in situ capability is crucial for optimizing the 
ALD growth processes. 

UPS (Ultraviolet Photoemission Spectroscopy). UPS is used to characterize the electron affinity, work function, or 
valence band maximum of materials. This UV discharge lamp can accommodate He, Ar, and Kr which will enable a 
number of lines to explore optically induced electron transitions at the metal-dielectric interface.  

UV-reflectivity. An existing UHV chamber will be modified to obtain UV reflectivity and/or transmission measurements 
to ~125nm in year 1 and to ~90nm.  The system will initially include a deuterium source with a VUV double 
monochromator (McPherson 234/302D double monochromator). The monochromator will be pumped for these 
measurements. The sample chamber is fitted with a MgF2 window to allow light into the system. The reflected light 
intensity will be measured with a calibrated photodiode.  The system will be upgraded to include a windowless hydrogen 
discharge lamp. The sample chamber will be modified to include a gate valve between the chamber and the 
monochromator which will provide windowless access to the PEALD samples. This system is connected to the UHV 
transfer line which means that samples can be measured immediately after preparation, and then as a function of time to 
assess degradation mechanisms. 

AES (Auger Electron Spectroscopy). AES can specify the composition of the surface layer of a sample. 

AFM (Atomic Force Microscopy). Ex situ AFM can characterize the morphology, physical, chemical, and magnetic 
properties of the sample surface.  

2.1 Atomic Layer Deposition 

Our implementation of the atomic layer deposition (ALD) process uses a chemical vapor deposition technique, which we 
use to synthesize the ultra-thin films. This process uses a cyclic self-limiting gas-phase chemical process, where each 
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2.3 PEALD Metal Fluorides 

Background: In light of the traditional ALD chemistry mentioned, which utilizes the chemisorption of a precursor and 
subsequent oxidation to grow metal oxide, it is reasonable to assume a similar process could be adopted to grow metal 
fluorides, which possess the desired high reflectivity in the UV. However, a simple fluorination step has proven difficult. 
The selection of non-metal reactive precursors that contain fluoride is limited, and the few reactants that are available, 
namely HF, are highly corrosive[55]. More recent work has thus focused on alternative fluorination  sources. Research by 
Pilvi et al.[56,57] used metal β-diketonates as metal precursors and metal fluorides, such as TiF4 and TaF5, as a fluoride 
source to successfully deposit MgF2, CaF2, and LaF2. The reactive ligand exchange that occurs between these two 
precursors results in the deposition of oxygen-free films; however, the process also introduces small amounts of titanium 
and tantalum contamination. Another approach to deposit metal fluorides has been demonstrated using oxide chemistry 
by Putkonen et al.[58]. This study took two approaches. The first used a fluorinated Ca β-diketonate and O3 to 
successfully deposit CaF2. The low concentration of oxygen in the CaF2 films (<5%) implies that the strong oxidation of 
ozone is not so reactive as to convert metal fluoride into metal oxide. The second approach introduced additional steps to 
the ALD cycle, using non-fluorinated β-diketonates and ozone to generate a metal oxide followed by 
hexafluoroacetylacetone dehydrate (Hhfac) and ozone to fluorinate the oxide. The results were polycrystalline MgF2, 
CaF2, and LaF2 films with less <2% oxygen content at a growth rate of ~0.4-0.5 Å/cycle. It was noted that the ALD 
fluoride films were characterized by an increase roughness as measured by AFM, TEM, and ellipsometry regardless of 
the deposition chemistry[56,58,59]. More specifically, films around 50 nm had a roughness of ~5 nm and the 
ellipsometrically deduced surface layer thickness ranged from 2 to 8 nm suggesting post processing surface reactions. 

Research Goals: The successful deposition of metal fluorides through oxide chemistry suggests that oxygen plasma may 
also be used to successfully grow metal fluoride films. We, therefore, suggest a similar approach to deposit MgF2, LiF, 
AlF3, LaF3, CaF2, and/or BaF2. Properties are summarized in Table 1. 

     Table 1: Physical and Atomic Properties of Metal Fluorides 

Material Band Gap Refractive Index Refs. 
MgF2 10.8 eV 1.36 1.43* [60,61] 
LiF ~14.0 eV 1.39  1.47* [61-63] 
AlF3 10.8 eV  1.43* [64,65] 
LaF3 10.3 eV  1.69* [61,66] 
CaF2 ~12.1 eV 1.80  [67,68] 
BaF2 11.3 eV 1.54  [69] 
*Refractive index of films deposited by ALD. Please note 
that there are variations in these values as dependent on the 
deposition and/or measurement techniques. 

A new PEALD system will be developed for the fluoride materials.  Sources for MgF2, CaF2 and LaF3 or AlF3 will be 
incorporated into the system. The system will be designed to use an oxygen plasma source following the process 
developed by Putkonen et al.[58]. While that process employed ozone, we anticipate that the oxygen plasma will provide 
more flexibility and enable lower deposition temperatures. The three materials are chosen to provide layers with 
different dielectric constants to enable multi-layer interference structures.  With the precise thickness control obtainable 
with PEALD and the computer controlled system we anticipate being able to demonstrate highly reflective VUV 
structures.  

We will continue our investigations to optimize the process and determine related surface chemistry. The optical 
properties of the subsequent films will be characterized by spectroscopic ellipsometry for UV applications.  We will also 
explore specific surface terminations that will improve the stability of the fluorides. 

2.4 PEALD Metals 

Background: Unlike the deposition of oxides or fluorides, the deposition of metals via PEALD cannot be achieved with 
oxide chemistry. This is particularly true of Al, which readily oxidizes. Instead, metals must be deposited with a 
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reducing reactant such as H2, N2/H2 or NH3 plasma. There are several studies[70-79] that have successfully deposited Al. In 
the studies by Lee et al.[70,71], deposition was achieved using trimethylaluminum (TMA) and H2 plasma. The growth rate 
was saturated at 1.5 Å/cycle. AFM showed the subsequent Al films to be smooth surface, and cross-sectional FESEM 
revealed excellent step coverage and conformality. As noted above a low deposition temperature is required and would 
be readily obtained with PEALD[29]. With the multi chamber system available in the NSL, these surfaces will be 
transferred to the oxide or fluoride PEALD systems for layer growth or to the XPS system to characterize the Al surface 
oxide. 

Research Goals: We will be upgrading our current H2/N2/NH3 plasma chamber to a PEALD system, which will allow 
for the deposition of metals. This conversion has previously been achieved, when a similar remote O2 plasma chamber 
deposition was converted into what is now the oxygen PEALD system.  The chamber will have computer controlled 
precursor delivery as well as purge and plasma cycles. The deposited layers will be characterized in situ by XPS and 
reflectivity measurements. These surfaces will serve as substrates for the oxide or fluoride layers or multilayers. 

3. OUTCOMES 
The work we are engaged in will demonstrate for the first time whether loss-free oxides of materials such as Al, Hf and 
Si can be deposited using ALD to lower cutoff reflectivities in the UV.  We will also demonstrate the success of using 
ALD to deposit low-loss thin films of fluoride-based materials, and aluminum metal.  Using these techniques we will 
then demonstrate our proof of concept of using these techniques together to construct thin-film multilayer metal-
dielectric cavities that can be tuned to isolate specific emission lines of astronomical importance, when combined with a 
reflective surface as the foundation.  The resulting optical technologies will advance the performance of thin-films in the 
FUV to match the UV detector advances that have been made to deliver the improvement in coating stability, thickness 
and performance that NASA seeks.  Such improvement will enable next generation space-based FUV missions, opening 
access to the wealth of diagnostic information the FUV offers for exoplanet science, star formation science and 
cosmological/IGM science. 
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