Skip to main content

Electron sources based on diamond pin-diodes

Contributors:   Franz A. M. Koeck, Manpuneet Benipal, and Robert J. Nemanich
ABSTRACT
Efficient electron sources are of ongoing interest in particular for high power terrestrial and space telecommunications and radar applications. With conventional cathode technology based on thermionicand field electron emission a novel approach for direct electron emission is realized through a diamond pin diode. Electrons injected into the conduction band of the intrinsic layer of the diode can be released into vacuum with a negative electron affinity surface of of the i-layer. The diamond pin diodes were prepared on boron doped (p-type) substrates with (111) surface orientation. A high purity intrinsic and a phosphorus doped diamond layer (n-type, ~400nm thickness) were deposited in dedicated PECVD systems, respectively. An additional contact layer comprised of nanostructured carbon was grown in a dedicated PECVD. The layered device was processed by lithography utilizing an aluminum hard mask to etch mesa structures with diameters ranging from 50μm to 200μm. The final devices were treated in a pure hydrogen plasma to induce the negative electron affinity properties of the i-layer. After an annealing step in high vacuum individual pin diodes were biased in forward current and voltages up to 20V. The observation of light from the diode was attributed to the UV exciton state and indicated bipolar transport. At a diode current of about 80mA an electron emission current of 25μA was observed from a single 200μm diameter diode.

Publisher: IEEE,   Published: ||   PDF (914.83 KB) ||   Read More...