Valence and conduction band alignment at ScN interfaces with 3C-SiC (111) and 2H-GaN (0001)
Contributors: Sean W. King, Robert J. Nemanich, and Robert F. Davis
ABSTRACT
In order to understand and predict the behavior of future scandium nitride (ScN) semiconductor heterostructure devices, we have utilized in situ x-ray and ultra-violet photoelectron spectroscopy to determine the valence band offset (VBO) present at ScN/3C-SiC (111) and 2H-GaN (0001)/ScN (111) interfaces formed by ammonia gas source molecular beam epitaxy. The ScN/3C-SiC (111) VBO was dependent on the ScN growth temperature and resistivity. VBOs of 0.4 ± 0.1 and 0.1 ± 0.1 eV were, respectively, determined for ScN grown at 925 °C (low resistivity) and 800 °C (high resistivity). Using the band-gaps of 1.6 ± 0.2 and 1.4 ± 0.2 eV previously determined by reflection electron energy loss spectroscopy for the 925 and 800 °C ScN films, the respective conduction band offsets (CBO) for these interfaces were 0.4 ± 0.2 and 0.9 ± 0.2 eV. For a GaN (0001) interface with 925 °C ScN (111), the VBO and CBO were similarly determined to be 0.9 ± 0.1 and 0.9 ± 0.2 eV, respectively.